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Approximating Spatial Locations
With Spherical Orientations for
Spherical Mechanism Design
In this paper we present a novel method for approximating a finite set of n sp
locations1 with n spherical orientations. This is accomplished by determining a de
sphere and the associated orientations on this design sphere which are nearest
spatial locations. The design sphere and the orientations on it are optimized such th
sum of the distances between each spatial location and its approximating spherica
entation is minimized. The result is a design sphere and n spherical orientations w
best approximate a set of n spatial locations. In addition, we include a modification to
method which enables the designer to require that one of the n desired spatial loca
be exactly preserved. This method for approximating spatial locations with sphe
orientations is directly applicable to the synthesis of spherical mechanisms for m
generation. Here we demonstrate the utility of the method for motion generation
specification in spherical mechanism design.@S1050-0472~00!00204-X#
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Introduction
Spherical mechanisms are linkages which generate sphe

motion of rigid bodies. In spherical motion, the displacement
any point on the body is constrained to the surface of a spher
contrast, planar mechanisms generate two-dimensional mo
For this reason their design is compatible with using conventio
drafting tools while the synthesis of spherical mechanisms
three-dimensional and is not well suited for these drafting te
niques. It is essential that the spherical mechanism designe
able to visualize the entire problem in three-dimensions and c
puter graphics can be an effective tool for providing this necess
visualization of the problem to the designer. Efforts have be
made to create computer graphics based software package
spherical four-bar mechanism design:

• SPHINX was the first spherical mechanism computer-aided
sign ~CAD! program written by Larochelle et al.@1# for use on
Silicon Graphics workstations. SPHINX begins by displaying ade-
sign sphere. The design sphere defines the surface in space u
which the workpiece is to be moved. The relative displaceme
between the locations on the design sphere are purely rotat
and are calledorientations. Orientations are defined by their lon
gitude, latitude, and roll angles@2#. In SPHINX orientations are
displayed to the designer as coordinate frames on the surfac
the design sphere, see Fig. 1. The current version of SPHINX has
modules for performing synthesis for three or four orientat
rigid body guidance. It is important to note that in SPHINX the
design sphere is of arbitrary radius and its location in spac
undefined.

• SPHINXPC @3# is a CAD program for personal compute
which like SPHINX utilizes a design sphere with orientations d
played on the sphere’s surface. With this software spher
mechanisms can be designed for four orientations. SPHINXPC also
can be used to design planar mechanisms for four location r
body guidance.

• SPHEREVR @4# is the first virtual reality~VR! based approach

*Address all correspondence to this author.
1The location or pose of a rigid body is defined by both its orientation a

position; the position is defined by three coordinates which uniquely define whe
point of the body is and the orientation is defined by three angles which orien
body with respect to a fixed reference body.

Contributed by the Mechanisms Committee for publication in the JOURNAL OF
MECHANICAL DESIGN. Manuscript received July 1998. Associate Technical Edit
C. M. Gosselin.
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to spherical mechanism design. This initial exploration of the u
of VR for spherical mechanism design has led to the developm
of a 3rd generation of VR based spherical mechanism design
ware called ISIS, see Larochelle, Vance, and McCarthy@5#. The
program utilizes the compute engine of SPHINX1.2 and provides
virtual objects in the design environment so that the design p
cess takes place in a virtual representation of the physical w
space. This new approach to mechanism design has demons
a need for new and efficient means for specifying the design
in the actual physical workspace of the mechanism.

To synthesize a spherical mechanism, the designer must
define the task to be accomplished. Here we are concerned
task specification for moving a workpiece through a sequenc
prescribed orientations in space. This task is referred to asrigid-
body guidanceby Suh and Radcliffe@6# and asmotion generation
by Erdman and Sandor@7#. An example of a rigid body guidance
task is shown in Fig. 2. The desired locations of the workpiece
defined in space. A coordinate frame is attached to the workp
and each of its desired locations is recorded. To date, when
signing spherical mechanisms the designer must determine an
propriate design sphere, i.e. its center and radius, from the de

nd
re a
the

r:
Fig. 1 SPHINX DESIGN SPHERE
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spatial locations. Moreover, the sets of angles which define
orientations of the body with respect to that design sphere m
also be determined. Currently, no methodologies exist to facili
this process. It is only after determining the design sphere and
orientations that the designer can utilize CAD tools such
SPHINX and SPHINXPC.

In this paper, one method of determining the optimal des
sphere and orientations from a desired set of spatial location
presented. First, the spatial locations are approximated with
entations in four-dimensional Euclidean space (E4). Biquater-
nions are then used to represent these orientations. Next, the
tance between the spatial locations and the orientations o
candidate design sphere are calculated using a bi-invariant m
on biquaternions. Finally, an optimization method is used to m
mize the distances between the spherical orientations on the
didate design sphere and the spatial locations. The result
procedure which numerically determines the optimal des
sphere and orientations for a finite set of desired spatial locati

Orientations in E4 and Biquaternions
In @2# Larochelle and McCarthy presented an algorithm for a

proximating a set ofn locations in planar Euclidean space (E2)
with n spherical orientations in three-dimensional Euclidean sp
(E3). By utilizing a bi-invariant metric on the image space
spherical displacements they arrived at an approximate
invariant metric for planar locations in which the error induced
the spherical approximation is of the order 1/R2, whereR is the
radius of the approximating sphere. In this paper we extend t
methodology to the general spatial case and utilize the resul
provide a novel method of specifying motion generation tasks
spherical mechanisms.

It was shown in Larochelle and McCarthy@2# that orientations
in E3 may be used to approximate locations in a bounded reg
of a two-dimensional plane. We utilize the contributions of Etz
and McCarthy@8# and extend that idea by using orientations inE4

to approximate locations in a bounded region of three-dimensio
space. This can be done by using a small portion of a fo
dimensional hypersphere, awedge, to approximate a bounded re
gion of space. Orientations on the surface of this wedge, which
represent with biquaternions, can be used to approximate the
tial locations. See Ge@9# in which he examines the theory o
biquaternions as representations of orientations on a hypersp

We proceed by briefly reviewing quaternions and biquat
nions. Recall that an orientation inE3 can be represented by
quaternion q5@q1 q2 q3 q4#T. The four components of the
quaternionq ~sometimes referred to as Euler parameters! are,

Fig. 2 A desired task
458 Õ Vol. 122, DECEMBER 2000
the
ust
ate
the
as

gn
s is
ori-

dis-
n a
etric
ni-
can-
is a
ign
ns.

p-

ace
f
bi-

by

eir
s to
for

ion
el

nal
ur-
-
we
spa-
f
ere.

er-

q15sx sin
u

2
5sxs

u

2

q25sy sin
u

2
5sys

u

2
(1)

q35sz sin
u

2
5szs

u

2

q45cos
u

2
5c

u

2

where s and u are the rotation axis and the angle of rotatio
associated with the orientation, respectively. Note that the com
nents ofq satisfy the following constraint equation,

q1
21q2

21q3
21q4

22150 (2)

and lie on a unit hypersphere which we denote asthe image space
of spherical displacements, see Larochelle@10# and McCarthy
@11#.

Recall that the location of a body inE3 has six degrees o
freedom~three to define orientation and three to define locatio!
and can be represented by a 434 homogeneous transform@12#:

T5F @R~u,f,c!# A d

........................

0 0 0 A 1
G (3)

@R~u,f,c!#5Roty~u!Rotx~2f!Rotz~c!

whered is a 331 translation vector. The anglesu, f, andc are
the longitude, latitude, and roll angles respectively@2#. In 1996
Etzel and McCarthy@8# showed that a 434 homogeneous trans
form in E3 can be approximated by a pure rotation inE4,

@D#5@J~a,b,g!#@K~u,f,c!# (4)

where,

J~a,b,g!] 5F ca 0 0 sa

2sbsa cb 0 sbca

2sgcbsa 2sgsb cg sgcbca

2cgcbsa 2sbcg 2sg cgcbca

G
and,

K~u,f,c!] 5F A 0

@R~u,f,c!# A 0

A 0

........................

0 0 0 A 1

G .

The anglesa, b and g are defined as follows: tan(a)5dx /R,
tan(b)5dy /R, and tan(g)5dz /R where dx , dy , and dz are the
components ofd andR is the radius of the hypersphere.

The bounded spatial workspace must represent only a s
portion of the hypersphere~i.e. a wedge!, hence we determine the
radius of the hypersphere as:

R5
4L

e1/2 (5)

whereL is the largest component of the translation vectors fr
the set of spatial locations ande is the maximum allowable erro
in the approximation of the spatial locations with the orientatio
in E4. The result is that then spatial locations lie within a 2L cube
and the wedge approximates a 4L cube, with the center of each
cube being the origin ofE3. It is important to note that the selec
tion of R determines the metric’s weighting between rotation
Transactions of the ASME
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distance and translational distance. AsR→` the metric disre-
gards translational distances and asR→0 the metric disregards
rotational distances, see Larochelle@13#. The radius selection for-
mula used here was shown by Larochelle@13# to yield a metric
which incorporates both the translation distance and the rota
distance between two spatial locations but the rotation is m
heavily weighted. This is appropriate since we are seeking to
sign spherical mechanisms to accomplish spatial tasks. Next
review how to determine the biquaternion associated with
matrix @D#.

Recall that biquaternions have the following form:

Ĝ5G1vH (6)

where G and H are quaternions andv is defined such thatv2

51, see Ge@9#. The biquaternion can also be represented as
ordered pair of quaternionsĜ5(G,H). The quaternionsG andH
are determined by the following computations. The fourth co
ponents ofG andH areG45cos(m) andH45cos(n) respectively,
with m and n being the real part of the eigenvalues from mat
@D#. The other three components ofG and H are computed as
follows:

G15
d232d321d142d41

4H4

G252S d312d131d422d24

4H4
D

G35
d212d121d342d43

4H4

H15
d322d232d141d41

4G4

H252S d312d132d421d24

4G4
D

H35
d212d122d341d43

4G4

wheredi j are the elements of@D#. From the above relations, it i
evident that there are three special cases which need to be
dressed, see Etzel@14#. First, if G450 then the first three ele
ments ofH are:

H15
d111d44

2G1

H25
d225d44

2G2

H35
d331d44

2G3
.

Second, ifH450 then the first three components ofG are:

G15
d111d44

2H1

G25
d221d44

2H2

G35
d331d44

2H3
.

Finally, if G450 andH450 then solve the following relations fo
Hi ( i 51,2,3):

d212d43

H2
5

d111d44

H1
5

d311d42

H3

and obtainGi as in theH450 case above.

The Metric. There exist numerous useful metrics for defini
the distance between two points in Euclidean space, howe
Journal of Mechanical Design
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defining similar useful metrics for determining the distance b
tween two locations of a rigid body is still an area of ongoi
research, see Kazerounian and Rastegar@15#, Bobrow and Park
@16#, Martinez and Duffy@17#, Larochelle and McCarthy@2#, Et-
zel and McCarthy@8#, and Gupta@18#. In the case of two locations
of a rigid body in E3 any metric used to measure the distan
between the locations yields a result which depends upon the
sen reference frames, see Martinez and Duffy@17#. However, Ra-
vani and Roth@19# define the distance between two orientations
E3 as the magnitude of the difference between their associ
quaternions, which is a bi-invariant metric2. Etzel and McCarthy
@8# extended this idea and presented a bi-invariant metric for
entations inE4. Here, we review their metric and present a me
odology which employs the metric to determine the optimal d
sign sphere associated with a finite set of spatial locations.

The bi-invariant metric on biquaternions is defined as:

d~Q̂,R̂!5A~Q2R!T~Q2R!1~S2T!T~S2T! (7)

where Q̂5(Q,S) and R̂5(R,T) are both biquaternions. For
proof that this metric is bi-invariant see Etzel and McCarthy@8#.

Optimizing the Design Sphere
In Fig. 3 a spherical orientation on a design sphere is shown

obtain the orientation frame relative to the fixed frame three
ordinate frame transformations are applied. First, the mov
frame is translated along the 331 center vectorc. Next, the mov-
ing frame is rotated by the longitude, latitude, and roll angles
defined by Eq. 3. Third, the moving frame is translated along
331 radial vectorr . The spherical orientation is now defined b
the following 434 homogeneous transform:

Tspherical~r ,c!5F @R# ] @R#r1c

..............................

0 0 0 ] 1
G

where@R# is the 333 rotation matrix defined in Eq. 3. LetTspatial
be the 434 homogeneous transform representation of a des
location of the workpiece in space, see Eq. 3. To determine
optimal design sphere the distance betweenTspatial and Tspherical

must be minimized for each of then desired locations inE3. The
next section presents a method to minimize this distance by
lizing the bi-invariant metric discussed above.

Optimization. Given a finite set ofn desired locations inE3

the task is to determine the optimal design sphere and then ori-
entations on that sphere. By examining the homogeneous tr
form representation ofTspherical it is clear that the optimization
variables arer and c since @R# may be extracted fromTspatial

3.
The optimization problem then becomes:

2Recall that a bi-invariant metric is independent of choice of both the fixed
moving frames.

3Note that by extracting@R# in this manner we guarantee that the orientations
the nTspherical will be identical to that of their associatedTspatial .

Fig. 3 Optimal design sphere
DECEMBER 2000, Vol. 122 Õ 459
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Minimize:

f ~r ,c!

Subject to:

ir i<2L

ici<2L

where:

f ~r ,c!5(
i 51

n

d~Q̂i ,R̂i !

and Q̂i and R̂i are the biquaternion representations of then
Tspherical and Tspatial respectively. Note that the magnitudes
both r andc are bounded to insure that the design sphere rem
within the 4L cube ofE3 that is being approximated by the hy
persphere’s wedge, see Eq. 5.

We utilize thesimplex method for function minimizationto find
r and c that minimize f (r ,c), see Nelder and Mead@20#. This
method was selected since it does not require analytical grad
and it is a direct multidimensional minimization algorithm.

Initialization. If the n spatial locations are in fact spheric
orientations then the center of the design sphere is located a
intersection of the relative screw axes associated with the lo
tions. However, with general spatial locations these relative sc
axes will not intersect, see Bottema and Roth@21#. Hence, we find
the point nearest all of the relative screw axes and use it as
initial center of the optimal design sphere. In Fig. 4 the comm
normal associated with two relative screw axes is shown.
intersections of the common normal with the two screw axes ap
andq. Note that if the screw axes do not intersect then the poin
space nearest the screw axes is the midpoint of the segmenpq.
The initial estimation of the centerc is selected as the point nea
est all of the relative screw axes associated with the spa
locations:

cinitial5

(
i 51

l

p1(
i 51

l

q

2l
(8)

wherel 5(2
m) andm5(2

n) is the number of relative screw axes4.

4Note that (r
n) denotes the binomial coefficient, often referred to as ‘‘n choose r.’’

Fig. 4 Common normal of two screw axes
460 Õ Vol. 122, DECEMBER 2000
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The initialization of r is obtained by equating the translatio
vectors ofTspatial andTspherical. For any given spatial location the
radial vectorr of the design sphere is then,

r5@R#T~dspatial2c!. (9)

Substitutingcinitial into Eq. 9 we obtain:

r5@R#T~dspatial2cinitial !. (10)

Using Eq. 10 we computer for each spatial location. The initia
estimation of the radial vector is then the average,

r initial5

(
i 51

n

r

n
. (11)

Preserving One Position. It may be necessary for the de
signer to require that one of the desiredTspatial be preserved. In
this case the design sphere is constrained to exactly preserve
one spatial location~referred to asTexact!. The design sphere is
then optimized to minimize the distance between the remain
Tspatial’ s and their associatedTspherical’ s. Let us label the elements
of the 434 homogeneous transform representation ofTexact as,

Texact5F @Rexact# ] dexact

...........................

0 0 0 A 1
G .

By equating the translation vectors ofTexact and Tspherical we
obtain:

dexact5@Rexact#r1c. (12)

We note that Eq. 12 is a linear system of three equations in the
unknown components ofr and c. The simplex method for func-
tion minimization is employed to optimize the location of th
center of the design spherec and Eq. 12 is used to determiner at
each iteration,

r5@Rexact#
T~dexact2c!. (13)

Spherical Index
Obviously, not all finite sets of general spatial locations can

approximated with spherical orientations. Some sets of spatia
cations are more near spherical than others and yield better sp
cal approximations while other sets of spatial locations may be
from spherical and for these no acceptable spherical approx
tions exist.

The method presented here does not guarantee an acceptab
of spherical orientations may be found for every set of gene
spatial locations. Recall that the purpose of this method is to
cilitate the design of spherical mechanisms for motion generat
The implication being that the set of spatial locations will benear
spherical and the method we present here determines the e
spherical orientations which best approximate the near sphe
locations. As a measure of how near spherical the original spa
locations are we utilize the followingspherical index (:

(5

(
i 51

m

udrelativeu

4Lm
(14)

wheredrelative is the translation along the relative screw axes
sociated with two locations andm andL are as defined above. Se
of spatial locations with small( yield acceptable spherical ap
proximations while sets with large( will not yield acceptable
spherical approximations. It is important to note that the mag
tude of( is dependent upon the choice of units used to define
spatial locations. Hence the spherical index( is only valid when
used as a relative measure to compare sets of locations expr
with respect to the same units and within the same 2L cube in
Transactions of the ASME
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space. Furthermore, regardless of choice of units, a value o(
50 indicates that then spatial locations are spherical and that
exact design sphere exists5.

Case Study: 1
We now illustrate the task specification methodology by app

ing it to the motion generation task shown in Fig. 2. The lon
tude, latitude, and roll angles~in degrees! and translation vectors
for the four desired spatial locations are found in Table 1. T
spherical index value for these locations is(57.211E28 which
indicates that these locations are very near spherical. Hence
anticipate that there exist spherical orientations which are v
near the original spatial locations and proceed with the numer
nonlinear optimization. The initializations of the center and rad
vectors are cinitial5@0.2227 0.221820.1629#T and r initial

5@20.1084 0.2114 5.1736#T. The radius of the hypersphere
R52080, withe50.0001 andL55.2. In Fig. 5 the optimal design
sphere and orientations are shown. The spherical orientation
the coordinate frames with thicker lines. The optimal center a
radial vectors for this design sphere arec5@0.1019
0.0791 0.0244#T and r5@20.0771 0.0151 5.0821#T. The opti-
mal orientations~18, 28, 38, 48! and their distances from th
original spatial locations are found in Table 1.

5Note that the design sphere will be exact and unique if(50 andn.3 since the
sphere passing though four or more points in space is unique.

Fig. 5 Case 1: Optimal design sphere and orientations for the
desired task

Table 1 Case 1: Desired spatial locations and their associated
optimal orientations
Journal of Mechanical Design
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Having now determined the orientations which best appro
mate the original spatial locations we can now use SPHINX to
design a spherical four-bar mechanism to generate the de
motion. The resulting mechanism, as displayed by SPHINX is
shown in Fig. 6, and as implemented in the workspace is show
Fig. 7. In order to employ this design to generate the des
motion manufacture the coupler for a radius ofir i , manufacture
the remaining links at appropriate radii, mount the mechan
such that the center of its associated sphere is located atc, and
attach the workpiece to the coupler.

Case Study: 2
We now illustrate the task specification methodology by app

ing it to a motion generation task with 10 prescribed locatio
The longitude, latitude, and roll angles~in degrees! and translation
vectors for the ten desired spatial locations are found in Tabl
The spherical index value for these locations is(50.049 which
indicates that these locations are somewhat near spherical
perhaps an acceptable solution exists. Hence, we proceed wit
numerical nonlinear optimization. The initializations of the cen
and radial vectors arecinitial5@0.2227 0.221820.1629#T and
r initial5@20.1084 0.2114 5.1736#T. The radius of the hyper-
sphere isR52103, with e50.0001 andL55.26. The nonlinear
optimization algorithm required 1837 iterations and run-time
;0.1 seconds on an R4400 SGIIndigo2 to converge to the fol-
lowing solution. In Fig. 8 two views of the original locations~first
row! and the optimal orientations~second row and thicker lines!
are shown. The left view in each row is looking down the z-a

Fig. 6 Case 1: A spherical mechanism for the desired task

Fig. 7 Case 1: A solution implementation for the desired task
DECEMBER 2000, Vol. 122 Õ 461
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of the fixed frame while the right views are looking down th
y-axis of the fixed frame. Moreover, in Fig. 9 the optimal desi
sphere and both the original locations and the optimal orientat
are shown. The optimal center and radial vectors for this des
sphere arec5@0.4271 20.3261 22.4987#T and r5@21.5112
0.5411 2.9713#T. The optimal orientations~18, 28, 38, etc.! and
their distances from the original spatial locations are found
Table 2. Note that the total error in the spherical approximation
0.0065 and that the error at any one location is not large relativ
the other location errors. In general, this indicates that an acc
able set of spherical orientations which approximate the orig
spatial locations has been found.

Case Study: 3
We now illustrate the task specification methodology by app

ing it to a motion generation task with 5 prescribed locatio
which are far from being spherical. The purpose of this case st

Fig. 8 Case 2: Ten original locations and their optimal
orientations

Table 2 Case 2: Desired spatial locations and their associated
optimal orientations
462 Õ Vol. 122, DECEMBER 2000
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is to discuss how the spherical approximation technique perfo
under such situations. Since the locations are intentionally
from being spherical we expect a large spherical index value
that all sets of spherical approximations determined by the n
linear optimization will have large errors associated with the
The longitude, latitude, and roll angles~in degrees! and translation
vectors for the desired spatial locations are found in Table 3.
spherical index value for these locations is(50.106 which indi-
cates that these locations are not near spherical. Nevertheles
proceed with the numerical nonlinear optimization. The initializ
tions of the center and radial vectors arecinit ial 5@259.7023
64.7726 214.5160#T and r init ial 5@61.1154 265.4455
211.1851#T. The radius of the hypersphere isR51116, with e
50.0001 andL52.79. The nonlinear optimization algorithm re
quired 2965 iterations to converge to the following solution. T
large number of iterations was required since the locations are
near spherical and that results in the initialization of the algorit
(cinitial and r initial) not being good initial estimates of the fina
solution. However, even in this case the run-time~;0.1 sec! of
the algorithm is still acceptable. In Fig. 10 the original locatio
and the optimal orientations~with thicker lines! are shown.
The optimal center and radial vectors for this design sphere
c5@0.7704 0.9344 0.6147#T and r5@0.5474 22.0626
21.0550#T. Note that they vary greatly from their initial esti
mates. The optimal orientations~18, 28, 38, etc.! and their dis-
tances from the original spatial locations are found in Table

Fig. 9 Case 2: Ten original locations and their optimal
orientations

Table 3 Case 3: Desired spatial locations and their associated
optimal orientations
Transactions of the ASME
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Note that the total error in the spherical approximations is surp
ingly small ~0.0033! and this indicates that perhaps an accepta
set of spherical orientations which approximate the five origi
spatial locations has been found. Upon further examination of
10 and Table 3 it is evident that the spherical approximations
not very close to some of the original locations. This is a typi
result for sets of locations which are not spherical. Often, a su
of the prescribed locations will be very near spherical. The sph
cal approximation to these subsets have small location errors
hence are very strong local minima. Here, the optimal orientati
for locations 4 and 5 have associated with them large errors s
locations 1, 2, and 3 are very near spherical6. In this case the
designer will have to determine how important locations 4 an
are to the desired task. If locations 4 and 5 were chosen to g
the moving body in some general direction~e.g., around an ob-
stacle! then perhaps the optimal orientations are acceptable. H
ever, if either location four or five is critical to the task at ha
then the optimal orientations most likely are not acceptable.

Summary
In this paper we have presented a novel method for appr

mating a finite set of spatial locations with orientations on a
sign sphere. This was accomplished with a new methodology
determining the optimal design sphere and the orientations on
design sphere for a finite set of desired spatial locations. Mo
over, we have included a modification to the algorithm such t
one of the desired spatial locations is exactly preserved. The re

6In fact, the spherical index for the first three locations is(51.762E27.

Fig. 10 Case 3: Five original locations and their optimal
orientations
Journal of Mechanical Design
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is that mechanism designers can now specify spherical mecha
motion generation tasks without having to introduce into the
sign space an artificial design sphere.

Finally, we believe that the utility of this new task specificatio
algorithm will be most evident when utilized in three-dimension
computer graphics design environments such as SPHINXPC and
SPHINX. Moreover, we anticipate that it will be an asset to the n
ISIS virtual reality spherical mechanism design environment c
rently being created in a collaborative effort led by Prof. J.
Vance at Iowa State University and Prof. P. M. Larochelle at
Florida Institute of Technology.
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