Approximating Spatial Locations
With Spherical Orientations for
raviam. se | Spherical Mechanism Design

Pierre M. Larochelle* In this paper we present a novel method for approximating a finite set of n spatial
locations with n spherical orientations. This is accomplished by determining a design
Robotics and Spatial Systems Laboratory, sphere and the associated orientations on this design sphere which are nearest the n
Mechanical Engingering Program, spatial locations. The design sphere and the orientations on it are optimized such that the
Florida Institute of Technology, sum of the distances between each spatial location and its approximating spherical ori-
Melbourne, FL 32901 entation is minimized. The result is a design sphere and n spherical orientations which

best approximate a set of n spatial locations. In addition, we include a modification to the

method which enables the designer to require that one of the n desired spatial locations
be exactly preserved. This method for approximating spatial locations with spherical

orientations is directly applicable to the synthesis of spherical mechanisms for motion

generation. Here we demonstrate the utility of the method for motion generation task
specification in spherical mechanism desifg$1050-047200)00204-X]

Introduction to spherical mechanism design. This initial exploration of the use
Spherical mechanisms are linkages which generate s heriof VR for spherical mechanism design has led to the development
p . . nkages | get P P(l:l 3rd generation of VR based spherical mechanism design soft-
motion of rigid bodies. In spherical motion, the displacement are called $is, see Larochelle, Vance, and McCartf§]. The
any point on the body is constrained to the surface of a sphere R)gram utilizes the compute éngine olMB\Jxl.Z and prbvides

contrast, planar mechanisms generate two-dimensional m_on@ tual objects in the design environment so that the design pro-
For t.h's reason th?'r design is compatlble W'th using conventionggg takes place in a virtual representation of the physical work-
drafting tools while the synthesis of spherical mechanisms i5,6 This new approach to mechanism design has demonstrated
three-dimensional and is not well suited for these drafting tech-aed for new and efficient means for specifying the design task

i

niques. It is essential that the spherical mechanism designer;R8ne actual physical workspace of the mechanism.
able to visualize the entire problem in three-dimensions and com-

puter graphics can be an effective tool for providing this necessaryTo synthesize a spherical mechanism, the designer must first
visualization of the problem to the designer. Efforts have bedlgfine the task to be accomplished. Here we are concerned with
made to create computer graphics based software packagestdgk specification for moving a workpiece through a sequence of
spherical four-bar mechanism design: prescribed orientations in space. This task is referred tagad:
] ) ) ) body guidancéy Suh and Radcliff¢6] and asmotion generation

. SPHINX was the flrst_spherlcal mechanism computer-aided dgy Erdman and Sandd7]. An example of a rigid body guidance
sign (CAD) program written by Larochelle et dl1] for use on  task is shown in Fig. 2. The desired locations of the workpiece are
Silicon Graphics workstations PBINX begins by displaying de-  defined in space. A coordinate frame is attached to the workpiece
sign sphere The design sphere defines the surface in space upgfd each of its desired locations is recorded. To date, when de-
which the workpiece is to be moved. The relative displacemenigyning spherical mechanisms the designer must determine an ap-
between the locations on the design sphere are purely rotatiopedpriate design sphere, i.e. its center and radius, from the desired
and are calledrientations. Orientations are defined by their lon-
gitude, latitude, and roll anglg®]. In SpHINX orientations are
displayed to the designer as coordinate frames on the surface of
the design sphere, see Fig. 1. The current versionrefNg has
modules for performing synthesis for three or four orientation
rigid body guidance. It is important to note that ipHBNXx the
design sphere is of arbitrary radius and its location in space i
undefined.

* SPHINXPC [3] is a CAD program for personal computers
which like SPHINX utilizes a design sphere with orientations dis-
played on the sphere’'s surface. With this software spherica
mechanisms can be designed for four orientatiorsiNXPC also
can be used to design planar mechanisms for four location rigic
body guidance.

* SPHEREVR [4] is the first virtual realitf VR) based approach

*Address all correspondence to this author.

The location or pose of a rigid body is defined by both its orientation and
position; the position is defined by three coordinates which uniquely define where :
point of the body is and the orientation is defined by three angles which orient the
body with respect to a fixed reference body.

Contributed by the Mechanisms Committee for publication in theRNAL OF
MECHANICAL DESIGN. Manuscript received July 1998. Associate Technical Editor:
C. M. Gosselin. Fig. 1 SpHinXx DESIGN SPHERE
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where s and 6 are the rotation axis and the angle of rotation
associated with the orientation, respectively. Note that the compo-
nents ofq satisfy the following constraint equation,

Qi +93+95+q;-1=0 )

and lie on a unit hypersphere which we denot¢hasimage space
of spherical displacementsee Larochelld10] and McCarthy
Fig. 2 A desired task [11].
Recall that the location of a body iB® has six degrees of
freedom(three to define orientation and three to define location
spatial locations. Moreover, the sets of angles which define thed can be represented by &4 homogeneous transforfi2]:
orientations of the body with respect to that design sphere must

also be determined. Currently, no methodologies exist to facilitate [R(6.¢.4)] ¢ d
this process. It is only after determining the design sphere and the T=| i 3)
orientations that the designer can utilize CAD tools such as 0 0 0 1
SPHINX and $HINXPC.
In this paper, one method of determining the optimal design [R(6,,¥)]1=Rot,(0)Rot(— ¢)Rot(#)

sphere and orientations from a desired set of spatial locations is ) )

presented. First, the spatial locations are approximated with offhered is a 3x1 translation vector. The anglés ¢, andy are
entations in four-dimensional Euclidean spade®)( Biquater- (e longitude, latitude, and roll angles respectivi2y. In 1996
nions are then used to represent these orientations. Next, the &gz_el_andaMcCarth)ESJ showed that a %4 homogeneous trans-
tance between the spatial locations and the orientations orfo§M in E° can be approximated by a pure rotationgif
candidate design sphere are calculated using a bi-invariant metric _

on biquaternions. Finally, an optimization method is used to mini- [DI=0(@.,7)]IK(6,4.4)] “)
mize the distances between the spherical orientations on the cahere,
didate design sphere and the spatial locations. The result is a
procedure which numerically determines the optimal design
sphere and orientations for a finite set of desired spatial locations. —sBsa cp 0 sBca

J(a,B,7)]=
(a.5.7)] —SsycBsa —sSysB Cy SycBca
—CcyCcBsa —sBcy —Sy cCycBca

Ca 0 0 Sa

Orientations in E* and Biquaternions

In [2] Larochelle and McCarthy presented an algorithm for ap-
proximating a set of locations in planar Euclidean spacg?j —and,

with n spherical orientations in three-dimensional Euclidean space )
(E®). By utilizing a bi-invariant metric on the image space of '

spherical displacements they arrived at an approximate bi- [R(0,¢0,)] + O
invariant metric for planar locations in which the error induced by K(8, ¢, )] = )

the spherical approximation is of the ordeR%/ whereR is the
radius of the approximating sphere. In this paper we extend their | e
methodology to the general spatial case and utilize the results to 0O 0 O : 1
provide a novel method of specifying motion generation tasks fi
spherical mechanisms.

It was shown in Larochelle and McCarthg] that orientations g :
in E3 may be used to approximate locations in a bounded regiSRmponents ol andR is the radius of the hypersphere.

of a two-dimensional plane. We utilize the contributions of Etzelo-{t?oen %(f)ltﬂgid Séeztiﬁler\(’é%rk;%gg glﬁztnéip\:veesggie?m%:tﬁéna”
and McCarthy[8] and extend that idea by using orientationgth P Ypersp : 9

to approximate locations in a bounded region of three-dimensior%fjlus of the hypersphere as:

?’rhe anglesa, B and y are defined as follows: tan)=d,/R,
tan(@)=d,/R, and tanf)=d,/R whered,, d,, andd, are the

space. This can be done by using a small portion of a four- 4L
dimensional hypersphere veedge to approximate a bounded re- R= —m (5)

gion of space. Orientations on the surface of this wedge, which we

represent with biquaternions, can be used to approximate the spherel is the largest component of the translation vectors from
tial locations. See G¢9] in which he examines the theory ofthe set of spatial locations ardis the maximum allowable error
biguaternions as representations of orientations on a hyperspherghe approximation of the spatial locations with the orientations

We proceed by briefly reviewing quaternions and biquatein E4. The result is that tha spatial locations lie within al2 cube

nions. Recall that an orientation i can be represented by aand the wedge approximates & 4ube, with the center of each
quaternionq=[q; g, 0z q4]". The four components of the cube being the origin oES. It is important to note that the selec-
guaterniong (sometimes referred to as Euler parametars, tion of R determines the metric’s weighting between rotational
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distance and translational distance. Rs-»e« the metric disre- defining similar useful metrics for determining the distance be-
gards translational distances andRs-0 the metric disregards tween two locations of a rigid body is still an area of ongoing
rotational distances, see Larochdle3]. The radius selection for- research, see Kazerounian and Rast¢gal, Bobrow and Park
mula used here was shown by Larochéllé&] to yield a metric [16], Martinez and Duffy{17], Larochelle and McCarthj2], Et-
which incorporates both the translation distance and the rotatinel and McCarthy8], and Guptd18]. In the case of two locations
distance between two spatial locations but the rotation is moog a rigid body in E® any metric used to measure the distance
heavily weighted. This is appropriate since we are seeking to dsetween the locations yields a result which depends upon the cho-
sign spherical mechanisms to accomplish spatial tasks. Next, wen reference frames, see Martinez and D[ff]. However, Ra-
review how to determine the biquaternion associated with theani and RotH19] define the distance between two orientations in
matrix[D]. E® as the magnitude of the difference between their associated
Recall that biquaternions have the following form: quaternions, which is a bi-invariant metri€tzel and McCarthy
G=G+wH ©) [8] extended this idea and presented a bi-invariant metric for ori-
entations inE*. Here, we review their metric and present a meth-
where G andH are quaternions ana is defined such tha»? odology which employs the metric to determine the optimal de-
=1, see G€9]. The biguaternion can also be represented as aign sphere associated with a finite set of spatial locations.

ordered pair of quaterniorS=(G,H). The quaternion§ andH The bi-invariant metric on biquaternions is defined as:
are determined by the following computations. The fourth com- Al T T
ponents ofG andH areG,=cos() andH,=cos() respectively, d(Q.R)=V(Q-R)"(Q—R)+(S-T)(S-T) )

with u and v being the real part of the eigenvalues from matrixyhere = (Q,S) and R=(R,T) are both biquaternions. For a

]ED”]- The other three components Gf andH are computed as proof that this metric is bi-invariant see Etzel and McCarftay
ollows:

Glzm Optimizing the Design Sphere

4H, In Fig. 3 a spherical orientation on a design sphere is shown. To

dgp—dqgt+dg—dy, obtain the orientation frame relative to the fixed frame three co-
Go=~— I T ordinate frame transformations are applied. First, the moving
4 frame is translated along the<dl center vectoc. Next, the mov-
dy;—dyotdga—das ing frame is rotated by the longitude, latitude, and roll angles as
Ga:—4H4 defined by Eq. 3. Third, the moving frame is translated along the
3X1 radial vector. The spherical orientation is now defined by
3y dyz—dygtdy the following 4x 4 homogeneous transform:
[ — .
4G, [R]  [Rlr+c
—dy3—dgt
- (M Tepherical [,C) = | +oovveeeiiiiiiin}
4G4 000 1
:d21—d12—d34+ dag where[R] is the 3x 3 rotation matrix defined in Eq. 3. L&ty
3 4G, be the 4x4 homogeneous transform representation of a desired

location of the workpiece in space, see Eqg. 3. To determine the

limal design sphere the distance betwd@gg i, and Tgnerical
must be minimized for each of thedesired locations itE3. The
next section presents a method to minimize this distance by uti-
lizing the bi-invariant metric discussed above.

whered;; are the elements ¢D]. From the above relations, it is
evident that there are three special cases which need to be
dressed, see Etzgl4]. First, if G,=0 then the first three ele-
ments ofH are:

175G, Optimization. Given a finite set oh desired locations i
1 . . . . .
the task is to determine the optimal design sphere andh -
=dzz= das entations on that sphere. By examining the homogeneous trans-
272G, form representation of g,nerica it is Clear that the optimization
Gant d variables are andc since[R] may be extracted fronT spatiala-
% The optimization problem then becomes:
2G;
Second, IfH4: 0 then the first three components Gfare: °Recall that a bi-invariant metric is independent of choice of both the fixed and
dyt+dyy moving frames.
Gl= SNote that by extractin§R] in this manner we guarantee that the orientations of
2H 1 the NTepnericai Will be identical to that of their associatédpayia-
_Oyptdyy
2 2H,
spherical
d33+ d44 f orientation
G3: T i
2H,

Finally, if G,=0 andH ,= 0 then solve the following relations for
H; (i=1,2,3):
dyy—dgs  dygt d44: da;+dgp A=

H2 Hl H3 fixed |
framg,v

and obtainG; as in theH,=0 case above. -

>

The Metric. There exist numerous useful metrics for defining
the distance between two points in Euclidean space, however, Fig. 3 Optimal design sphere
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S The initialization ofr is obtained by equating the translation
vectors ofTg,aia @Nd Tspnerica: FOr @ny given spatial location the
radial vectorr of the design sphere is then,

r= [R]T( dspatial_ C). 9
Substitutingci,iia iNto Eq. 9 we obtain:

r= [R]T( dspatial_ Cinitial) - (10)

Using Eqg. 10 we compute for each spatial location. The initial
estimation of the radial vector is then the average,

>r

i=1
Finitial =~ - (11)

Preserving One Position. It may be necessary for the de-
signer to require that one of the desirgg,,, be preserved. In
this case the design sphere is constrained to exactly preserve this
one spatial locatiorfreferred to asTq.,c)- The design sphere is
then optimized to minimize the distance between the remaining
Tspatial S @nd their associat€lpnerical S- Let us label the elements
of the 4x4 homogeneous transform representatio gfas,

Fig. 4 Common normal of two screw axes

Minimize: [Rexacﬂ dexact
f(r,c) Tayxact=| rrrrererrrerermiinind)s .

Subject to:
Irl<2L B%/ e_quating the translation vectors Gyt and Tepnerical WE
rlis obtain:

“ C” <2L Jexac [ Rexacd" +C. (12)

where: We note that Eq. 12 is a linear system of three equations in the six
unknown components af andc. The simplex method for func-
n tion minimization is employed to optimize the location of the
f(r,c)=2 d(d.R) center of the design spheceand Eq. 12 is used to determinet
=1 each iteration,

and Qi and ﬁai are the biquaternion representations of the I =[Rexact " (Jexaci— C)- (13)
Tspherical and T ot respectively. Note that the magnitudes of

bothr andc are bounded to insure that the design sphere remaiSpherical Index

within the 4L cube ofE® that is being approximated by the hy-

Obviously, not all finite sets of general spatial locations can be
persphere’s wedge, see Eq. 5.

s : ) L approximated with spherical orientations. Some sets of spatial lo-
We utilize thesimplex method for function minimizatiemfind  c4tions are more near spherical than others and yield better spheri-
r and c that minimizef(r,c), see Nelder and MeafP0]. This ¢4 approximations while other sets of spatial locations may be far

method was selected since it does not require analytical gradiefiiy, spherical and for these no acceptable spherical approxima-
and it is a direct multidimensional minimization algorithm. tions exist.

Initialization.  If the n spatial locations are in fact spherical 1he method presented here does not guarantee an acceptable set

orientations then the center of the design sphere is located at #heSpherical orientations may be found for every set of general
intersection of the relative screw axes associated with the lo&Ratial locations. Recall that the purpose of this method is to fa-
tions. However, with general spatial locations these relative scréfijtate the design of spherical mechanisms for motion generation.
axes will not intersect, see Bottema and R@t]. Hence, we find The |mpllcatlon being that the set of spatial Iocatlon§ willnesar

the point nearest all of the relative screw axes and use it as ffericaland the method we present here determines the exact
initial center of the optimal design sphere. In Fig. 4 the commgtPherical orientations which best approximate the near spherical
normal associated with two relative screw axes is shown. THations. As a measure of how near spherical the original spatial
intersections of the common normal with the two screw axepardocations are we utilize the followingpherical index ©:

andg. Note that if the screw axes do not intersect then the point in m

space nearest the screw axes is the midpoint of the segment E | eative

The initial estimation of the centeris selected as the point near- =1

est all of the relative screw axes associated with the spatial ©= ~alm (14)
locations:

whered,¢aive IS the translation along the relative screw axes as-
: : sociated with two locations and andL are as defined above. Sets
2 p+2 q of spatial locations with smalb yield acceptable spherical ap-
P b (8) Proximations while sets with large will not yield acceptable
initial 2l spherical approximations. It is important to note that the magni-
m o . tude of © is dependent upon the choice of units used to define the
wherel =(3) andm=(3) is the number of relative screw afes spatial locations. Hence the spherical ind@ss only valid when
used as a relative measure to compare sets of locations expressed
“Note that ) denotes the binomial coefficient, often referred to aschoose ' with respect to the same units and within the sarmhecbe in
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space. Furthermore, regardless of choice of units, a value of
=0 indicates that the spatial locations are spherical and that an
exact design sphere exidts

Case Study: 1

We now illustrate the task specification methodology by apply-
ing it to the motion generation task shown in Fig. 2. The longi-
tude, latitude, and roll angld@n degreesand translation vectors
for the four desired spatial locations are found in Table 1. The
spherical index value for these locationstis=7.211E—8 which
indicates that these locations are very near spherical. Hence, we
anticipate that there exist spherical orientations which are very
near the original spatial locations and proceed with the numerical
nonlinear optimization. The initializations of the center and radial
vectors  are Cpiy=[0.2227 0.2218—0.1629" and Iy
=[—0.1084 0.2114 5.1736. The radius of the hypersphere is Fig. 6 Case 1: A spherical mechanism for the desired task
R=2080, withe=0.0001 and_=5.2. In Fig. 5 the optimal design
sphere and orientations are shown. The spherical orientations are
the coordinate frames with thicker lines. The optimal center ar
radial vectors for this design sphere are=[0.1019 (/\
0.0791 0.024# andr=[—0.0771 0.0151 5.0831. The opti-
mal orientations(1’, 2’, 3', 4’) and their distances from the
original spatial locations are found in Table 1.

®Note that the design sphere will be exact and uniqu@#0 andn>3 since the
sphere passing though four or more points in space is unique.

Table 1 Case 1: Desired spatial locations and their associated
optimal orientations

Pos. Long. | Lat. Roll dy dy d, Distance

1 0.0 -90.0 0.0 0.00 | —5.00 [ 0.00 NA .

1 0.0 —90.0 0.0 0.02 | —5.00| 0.04 || 1.555E -5

2 14.12 | —38.41 | 51.48 || 0.92 | —2.98 | 3.65 NA

2’ 14.12 | —38.41 | 51.48 {{1.01 | —-3.12| 3.87 | 8.485E -6

3 4723 | —7.46 | 108.55 || 4.00 | —0.71 | 3.70 NA

3 47.23 | —7.46 | 108.55 || 3.80 | —0.66 | 3.43 | 1.555E — 5

4 90.0 0.0 180.0 || 5.20 | 0.00 | 0.00 NA . . P . .

7 900 50 Te00 1518 T 006 =005 1 16075 =5 Fig. 7 Case 1: A solution implementation for the desired task
TOTAL 5.655E — 5

Having now determined the orientations which best approxi-
mate the original spatial locations we can now usei®x to
o design a spherical four-bar mechanism to generate the desired
BT T % motion. The resulting mechanism, as displayed WHISX is
shown in Fig. 6, and as implemented in the workspace is shown in
Fig. 7. In order to employ this design to generate the desired
motion manufacture the coupler for a radius||of, manufacture
the remaining links at appropriate radii, mount the mechanism
such that the center of its associated sphere is located atd
attach the workpiece to the coupler.

Case Study: 2

We now illustrate the task specification methodology by apply-
ing it to a motion generation task with 10 prescribed locations.
The longitude, latitude, and roll anglés degreesand translation
vectors for the ten desired spatial locations are found in Table 2.
The spherical index value for these locationsdis- 0.049 which
indicates that these locations are somewhat near spherical and
perhaps an acceptable solution exists. Hence, we proceed with the
numerical nonlinear optimization. The initializations of the center
and radial vectors ar@y=[0.2227 0.2218—0.1629" and
Finir = —0.1084 0.2114 5.1736. The radius of the hyper-
sphere isR=2103, with e=0.0001 andL=5.26. The nonlinear
optimization algorithm required 1837 iterations and run-time of
~0.1 seconds on an R4400 S@idigde® to converge to the fol-
lowing solution. In Fig. 8 two views of the original locatioffirst
Fig. 5 Case 1: Optimal design sphere and orientations for the row) and the optimal orientationsecond row and thicker lings
desired task are shown. The left view in each row is looking down the z-axis

Journal of Mechanical Design DECEMBER 2000, Vol. 122 / 461



Table 2 Case 2: Desired spatial locations and their associated
optimal orientations

Pos. Long. | Lat. Roll de dy d, Distance
1 0.0 0.0 0.0 —.6225 | 1.6500 | 1.1675 NA
1’ 0.0 0.0 0.0 —1.0845 | 0.2150 4727 .0006
2 -14.48 | —9.33 | -5.12 || —.3645 | '1.8068 | 0.9737 NA
2 —14.48 | -9.33 | —5.12 —.3854 | 0.6671 0.6254 .0004
3 —-33.01 | —8.86 | —10.80 |y 0.4514 | 1.76089 | 0.7980 NA
3 -33.01| —8.86 | ~10.80 || 0.5763 | 0.7666 | 0.6935 .0003
4 —46.80 | —4.85 | —10.38 || 1.3665 | 1.7332 | 0.5735 NA
4 —46.80 | —4.85 | —10.38 || 1.3951 | 0.6690 | 0.5801 0.0004
5 —61.14 | —.83 | -9.83 1.9438 1.6230 | 0.1262 NA
5 —61.14| —.83 | —9.83 || 2.1731 | 0.5663 | 0.2511 0.0004
6 ~74.65  0.27 | —10.19 | 2.5714 1.2402 | —.4189 NA
6 —74.65 | 0.27 | —-10.19 || 2.7480 | 0.6299 | —.2390 .0003
7 87.49 | 453 | —10.51 || 2.8586 | 0.9905 | —1.2134 NA
7 87.49 | 453 | —10.51 || 3.3322 | 0.6505 | —1.0799 .0002
8 70.25 7.46 -8.69 3.6236 | 0.6505 | —2.0136 NA
8’ 70.25 | 7.46 | —8.69 || 3.6236 | 0.6505 | —2.0136 0.0
9 50.24 | 10.56 | —8.09 || 4.2561 | 0.2748 | -3.1739 NA
9’ 50.24 | 10.56 | —8.09 3.5363 | 0.8341 | —3.1255 0.0005
10 26.07 | 13.31 { —9.68 5.2582 | —.5780 | —4.8453 NA
10’ 26.07 | 13.31 | —9.68 || 2.8865 | 1.0959 | —4.3250 || 0.0034

TOTAL 0.0065

of the fixed frame while the right views are looking down the

y-axis of the fixed frame. Moreover, in Fig. 9 the optimal desigrig. 9 Case 2: Ten original locations and their optimal

sphere and both the original locations and the optimal orientatiomentations

are shown. The optimal center and radial vectors for this design

sphere arec=[0.4271 —0.3261 —2.4987" and r=[—1.5112

0.5411 2.971F. The optimal orientationsl’, 2’, 3’, etc) and is to discuss how the spherical approximation technique performs
their distances from the original spatial locations are found wnder such situations. Since the locations are intentionally far
Table 2. Note that the total error in the spherical approximationsfiom being spherical we expect a large spherical index value and
0.0065 and that the error at any one location is not large relativettwt all sets of spherical approximations determined by the non-
the other location errors. In general, this indicates that an accelptear optimization will have large errors associated with them.

able set of spherical orientations which approximate the origin&he longitude, latitude, and roll anglés degreesand translation

spatial locations has been found. vectors for the desired spatial locations are found in Table 3. The
spherical index value for these locationsZis= 0.106 which indi-
Case Study: 3 cates that these locations are not near spherical. Nevertheless, we

. B roceed with the numerical nonlinear optimization. The initializa-
~ We now |IIust_rate the tasl_< spemﬂca‘qon methodo_logy by appl fons of the center and radial vectors argy, =[ —59.7023
ing it to a motion generation task with 5 prescribed location

T —
which are far from being spherical. The purpose of this case stu 7726 _T14'516q ) and Finitial =[61.1154 —65.4455
—11.185]". The radius of the hypersphere ®&=1116, withe

=0.0001 and_=2.79. The nonlinear optimization algorithm re-
quired 2965 iterations to converge to the following solution. The
large number of iterations was required since the locations are not
near spherical and that results in the initialization of the algorithm

YA «/
\l // \/ (Cinitir @Nd T'initiar) NOt being good initial estimates of the final
A

v

=== solution. However, even in this case the run-titred.1 se¢ of
\/ the algorithm is still acceptable. In Fig. 10 the original locations
E,/ and the optimal orientationgwith thicker lines are shown.
A The optimal center and radial vectors for this design sphere are

° a__\/ /!
. [—F P /\ c=[0.7704 0.9344 0.6147 and r=[0.5474 —2.0626
! m__¢ ‘ :<1 < —1.0550". Note that they vary greatly from their initial esti-

mates. The optimal orientationd’, 2’, 3’, etc) and their dis-
tances from the original spatial locations are found in Table 3.

Table 3 Case 3: Desired spatial locations and their associated

/
optimal orientations
\,,/ Pos. Long. Lat. Roll dy d, d, Distance
N
s

1 —60 | 60 | —03 | -.6010] —.642 | —2620 ] NA

T 60 | —60 | —.03 | —.2339 | —1.1300 | —4292| 0.0004

— ! l____ 2 066 | 150 | —54 | —6710 | —1.240 | —4340 | NA

SL 7 066 | 1.50 | —.54 | —.3087 | —1.209 | —.3130 || 0.0002

' — 5 ‘4 3 | —54.31 | —31.36 | —20.74 || —.4540 | —1.4100 | 0.7830 | NA

YF < 3 | —54.31 | —31.36 | —20.74 || —.4539 | —1.4180 | 0.7830 | 0.0

]—— < 4 | 6698 47.13 | —20.54 | 0.4570 | —2.790 | —.7040 | NA

T | —6698 ] 47.13 | —20.54 || —.3280 | —1.3800 | 0.9540 | 0016

5 000 | 000 | 000 | 1275 | 1415 | —2225| NA

Fig. 8 Case 2: Ten original locations and their optimal 5 0.00 | 000 | 0.00 }j—.2220(—11280 | —4403 [ .0010
orientations TOTAL 0.0033
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is that mechanism designers can now specify spherical mechanism
motion generation tasks without having to introduce into the de-
sign space an artificial design sphere.

Finally, we believe that the utility of this new task specification
algorithm will be most evident when utilized in three-dimensional

g N\ computer graphics design environments such msINkPC and
{7 FrHd S ) N SpHINX. Moreover, we anticipate that it will be an asset to the new
ey Sy A O N | N R R 3ty Isis virtual reality spherical mechanism design environment cur-
'3 I r— T %

/| ‘ T 3 rently being created in a collaborative effort led by Prof. J. M.
s N e o ot A | I =4 Vance at lowa State University and Prof. P. M. Larochelle at the
Florida Institute of Technology.
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